

15MAT21

Second Semester B.E. Degree Examination, June/July 2019 **Engineering Mathematics - II**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

a. Solve $(D^2 - 4D + 4)y = e^{2x} + \cos 2x + 4$ by inverse differential operator method. (06 Marks)

b. Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = e^{2x} \sin x$ by inverse differential operator method. (05 Marks)

c. Using the method of undetermined coefficients, solve $y'' - 3y' + 2y = x^2 + e^x$. (05 Marks)

2 a. Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$ by inverse differential operator method. (06 Marks)

b. Solve $(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-3x}$ by inverse differential operator method. (05 Marks)

c. Solve $y'' - 2y' + y = \frac{e^x}{x}$ by method of variation of parameters. (05 Marks)

a. Solve $(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$. (06 Marks)

b. Solve $xy\left(\frac{dy}{dx}\right)^2 - (x^2 + y^2)\frac{dy}{dx} + xy = 0$ (05 Marks)

c. Solve $x^2(y-px) = p^2y$ by reducing into Clairaut's form and using the substation $X = x^2$ and $Y = y^2$. (05 Marks)

4 a. Solve $x^2y'' - xy' + 2y = x \sin(\log x)$.

(06 Marks)

Obtain the general solution of the differential equation $p^2 + 4x^5p - 12x^4y = 0$. (05 Marks)

c. Obtain the general and singular solution of $y = 2px + p^2y$.

(05 Marks)

Module-3

Form the partial differential equation by eliminating the arbitrary function from the relation (06 Marks)

b. Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2\sin y$ when x = 0 and z = 0 when y is an odd multiple of $\pi/2$. (05 Marks)

c. Derive one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$. (05 Marks)

- Form a partial differential by eliminating the arbitrary function of from the relation (06 Marks) $\phi(x^2 + y^2 + z^2, z^2 - 2xy) = 0.$
 - Solve $\frac{\partial^2 z}{\partial x^2} + 4z = 0$, given that when x = 0, $z = e^{2y}$ and $\frac{\partial z}{\partial x} = 2$ (05 Marks)
 - Determine the solution of the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial K^2}$ by the method of separation of (05 Marks) variables for the constant K is positive.

Module

- Evaluate $\int_{1}^{2} \int_{3}^{4} (xy + e^{y}) dy dx.$ (06 Marks)
 - Evaluate $\int_{0}^{4a} \int_{0}^{2\sqrt{ax}} dy dx$ by changing the order of integration. (05 Marks)
 - Obtain the relation between the beta and gamma function in the form

$$\beta(m,n) = \frac{\overline{(m) \cdot \overline{(n)}}}{\overline{(m+n)}}$$
 (05 Marks)

- Evaluate $\int e^{-(x^2+y^2)} dxdy$ by changing into polar coordinates. (06 Marks)
 - (05 Marks)
 - Using beta and gamma function, prove that (05 Marks)

- (06 Marks)
- b. If $f(t) = \begin{cases} t & 0 \le t \le \pi \\ 2\pi t & \pi < t \le 2\pi \end{cases}$, where $f(t + 2\pi) = f(t)$, then prove that $L[f(t)] = \frac{1}{s^2} \tan h$ (05 Marks)
- Find $L^{-1} \left| \frac{s}{(s^2 + a^2)^2} \right|$ using convolution theorem. (05 Marks)

- a. Express $f(t) = \begin{cases} 1 & 0 < t < 1 \\ t & 1 < t < 2 \end{cases}$ in term of unit step function and hence find its Laplace
 - transform. (06 Marks)
 - Find $L^{-1} \left| \frac{s+5}{s^2 6s + 13} \right|$ (05 Marks)
 - Employ the Laplace transform to solve the differential equation $y''(t) + 4y'(t) + 4y(t) = e^{-t}$ (05 Marks) with the initial condition y(0) = 0 and y'(0) = 0.